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Abstract – 

In construction environments, modifications to the 
dimensions, positioning, and trajectory of plumbing 
infrastructure within edifices are frequently 
necessitated by on-site conditions and pragmatic 
installation procedures. Recent advancements in 
Scan-to-BIM technology have streamlined pipe 
construction processes by monitoring development 
through a 3D model. However, existing 3D point cloud 
processing methods rely heavily on given local 
geometric information to distinguish pipes from 
adjacent components. Furthermore, point clouds 
originating from construction environments are 
mostly class-imbalanced data which could negatively 
impact the date-driven approach. This paper 
proposed a novel framework for segmenting and 
reconstructing piping systems utilizing raw 3D point 
cloud data acquired from construction sites, 
addressing the aforementioned challenges. The data 
firstly undergoes preprocesssing, including the 
elimination of  redundant points, rotational 
adjustments, and sampling procedures. Subsequently, 
a point cloud semantic segmentation network is 
trained to predict the per-point class labels after 
adding local features and mitigating the class 
imbalance issues. Finally, Efficient RANSAC is 
employed to identify cylinder-shaped pipes based on 
the prediction outcomes. The proposed framework 
shows superior performance compared to existing 
semantic segmentation methods and exhibits 
considerable promise for piping system 
reconstruction. 
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1 Introduction 
Mechanical, electrical, and plumbing (MEP) system 

makes up a large amount of construction cost and asset 
value. Recent advances in laser scanning and Building 
Information Modeling (BIM) technologies have 
demonstrated the great potential of Scan-to-BIM 
application for MEP systems. However, compared with 
visible structural and architectural components like 
columns, walls, floors, ceilings, windows, and doors in 
an as-built interior environment, pipes and ducts are less 
frequently extracted, analyzed, and reconstructed [1]. 
The workflow for extracting MEP systems directly from 
raw point cloud data with architectural and structural 
components in close proximity remains to be discussed 
[2]. 

3D point cloud data applications in the construction 
field, such as geometry quality inspection and semantic 
model reconstruction, are limited by requiring the 
existence of a BIM model as a precondition. Construction 
sites are ideal places to capture the point cloud data 
before pipes are covered by other structural components 
to record the size, location and route [1]. However, only 
a partial scan of the pipe surface might be available due 
to the space limitation for scanning [3] . 

Machine learning and deep learning are fast-growing 
techniques in 3D point cloud reconstruction. Current 
state-of-the-art deep learning model, like PointNet [4], 
uses no local structure information within neighboring 
points [5] and thus cannot correctly separate pipes from 
neighboring contexts, like ceilings and walls, in terms of 
semantic segmentation. There are other works focusing 
on classifying point cloud data, including pipes by 
traditional machine learning methods like Support Vector 
Machine (SVM) [6], AdaBoost [7], Conditional Random 
Field and Markov Random Field [2], which do not 
directly feed raw point cloud data into the neural network 
but instead calculate and use predefined geometric 
features to train the classifier. 



This paper proposes a framework to segment and 
reconstruct a pipe model using raw 3D point cloud data 
from construction sites with architectural and structural 
components in close proximity. An overview is shown in
Figure 1. The onsite raw scans are first preprocessed by 
removing redundant information, applying rotation to 
align data to the x-axis and y-axis directions and 
sampling points for training from evenly divided blocks. 
Then the training data sets containing six classes of 
structural components are passed to the proposed neural 
network. The backbone network is robust to semantic 
segmentation tasks on pipes by adding local features like 
intensity and normal, modifying the classifier such as 
adding weight for loss function and using a threshold for 
prediction, and using ROC AUC as alternative evaluation 
metrics. The output of the deep learning model is then 
processed with Efficient RANSAC algorithms to detect 
cylinder shapes with heavy noise in a constrained time. 
The obtained cylinder's parameters could then be used to 
create a potential BIM model. Finally, the proposed 
framework is verified by comparing reconstruction 
results using ground truth data collected from a laser 
scanner on a construction site with the prediction result 
made by the neural network. The key contributions of this 
work can be delineated as follows: (a) the study 
summarized research related to reconstruction of piping 
systems and extended them to be generally applicable as 
a framework, (b) the research proposes an procedure to 
modify and tune a deep learning model suitable for 
partially scanned objects, highly imbalanced, and over-
noisy datasets, and (c) the experiment explored and 
assessed the proposed semantic segmentation and shape 
detection framework by empirically employing real-
world construction site dataset.

2 Related Work

2.1 3D Models in Construction Field
There are mainly two kinds of 3D model 

reconstruction based on the information contained in the 
model: (1) geometry model reconstruction and (2) 
semantic model reconstruction [8]. The difference is that 
the latter includes the geometric information and the 
object's semantic information. Both two categories 
depend heavily on the implementation of computer 
vision algorithms such as Structure from Motion (SFM) 
[9] and random sample consensus (RANSAC) [10]. The
semantic information for point clouds acquired from the
construction field refers to building components such as
ceilings, walls, and MEP systems. Instance-wise or point-
wise object classification has been widely studied to
reconstruct the as-built model with the purpose of
comparing it with an pre-design 3D model. Given
existing BIM models, 3D point clouds can be used for

geometry quality inspection and construction process 
monitoring [11]. Even if not, as-built 3D model
reconstruction can still be helpful for facility 
management, such as renovation [12], maintenance [13], 
and energy analysis [14]. As the 3D BIM model is 
beneficial for various applications in the whole life cycle 
of a building, there still lacks a general framework for 
segmentation and reconstruction of the as-built building, 
where onsite 3D point cloud data would be practical for 
constructing a workflow.

Figure 1. Overview of pipes segmentation and 
reconstruction process

2.2 3D Semantic Segmentation
Semantic segmentation of 3D point clouds is to 

generate semantic information for every point. It is 
usually considered supervised learning methods, 
including traditional machine learning techniques and 
state-of-the-art deep learning approaches [5]. Supervised 
machine learning techniques are further divided into two 
groups: (1) feature based on every single point, such as 
Support Vector Machine [6], AdaBoost [7] and (2) 
feature based on contextual information in graphical 
models, such as Conditional Random Field and Markov 
Random Field [2]. Compared with traditional machine 
learning methods, deep learning approaches feed training 
data directly into a neural network to acquire high-
dimensional features without specific knowledge for 
feature design and extraction. The deep learning 
approaches can then be divided into three categories 



based on the format in which the point cloud is fed into 
the neural network: (1) Multiview [15], (2) voxel, and (3) 
raw point cloud. Since Multiview and voxel forms need 
to convert 3D point cloud data to 2D images or low-
resolution forms, directly binding transformation in the 
neural network and performing on point cloud data have 
advantages in controlling computational overhead and 
maintaining original information of feature space. 
However, these deep learning approaches deal with only 
single-shape recognition problems or lack local structure 
information to correctly separate certain target classes 
from neighbor structural components in close proximity. 
A refinement for the architecture of the current neural 
network used in 3D point cloud semantic segmentation 
on construction sites needs to be further explored. 

2.3 Plumbing Pipe Reconstruction 
There has been extensive interest in research on the 

reconstruction of pipes by 3D point cloud data in 
computer vision and construction management. Ahmed 
et al. [16] use Hough-transform and domain constraints 
to develop an effective approach to locating and 
reconstructing 3D pipes. Dimitrov et al. [17] introduce a 
new region-growing method with a single parameter, 
which accounts for the desired level of abstraction for 
context-free segmentation of building point clouds, 
including MEP systems. Due to a large number of noises 
and different sizes of pipelines that cannot be directly 
used by traditional methods such as region-growing, 
RANSAC and Hough transformation, Liu et al. [18] 
proposed a simpler method to find circles in 2D space 
rather than finding cylinders in 3D space. Since most of 
the above research targets are pipes in scenes where there 
are dominantly planar or non-planar surfaces, Perez-
Perez et al. [2] presented a Markow Random Field 
learning method to assign semantic labels to point cloud 
segment where MEP systems are close to building 
components. Studies also use neural networks to reduce 
the time-consuming and labor-intensive process of pipe 
recognition and segmentation. Kim et al. [19] showed an 
automatic pipe and elbow recognition method, including 
CNN, to filter falsely classified points against occlusion 
between pipes and elbows. Cheng et al. [20] utilized 
PointCNN [21] to learn the point cloud feature and 
classify points into 6 different classes and no-part for 
later clustering and aggregation. Kim et al. [22] tested the 
performance of MCVNN [15] and PointNet [4] on 
retrieving piping component types from an already 
segmented point cloud. In most of the research, the MEP 
system data has already had a high resolution before 
classification or shape detection, while the point cloud 
data from the construction site is usually a partial scan 
due to the obstructions. There is also little discussion 
about evaluating reconstruction results using the original 
ground truth data with reconstruction results by the 

prediction result. 

2.4 Imbalanced Classification 
While the convolutional neural network is gaining 

significance in perception fields, one big challenge is that, 
some classes in the data set have a remarkably higher 
portion than other classes; it’s also referred to as class 
imbalance. The class imbalance would affect 
convergence during training and a model's generalization 
while testing. [23] Strategies for addressing the class 
imbalance problem are mainly divided into two 
categories [24]: (1) data-level sampling methods and (2) 
classifier-level weight methods. The main idea of 
oversampling is replicating samples from minority 
classes, while undersampling refers to removing 
examples from majority classes. Both methods would 
address the problem to some extent, but there are also 
shortcomings: while oversampling may cause an 
overfitting problem, undersampling would lose specific 
valuable data. Cost-sensitive learning [25] assigns 
different weights for wrong predictions from different 
classes. One way to implement it in a neural network is 
to pass the weighted loss to the backpropagation process. 
Another classifier-level weight method is tantamount to 
adjusting the threshold for the last layer of the neural 
network. Usually, the output is divided by its prior 
probability, which equals the ratio of the corresponding 
instances in the same class. These strategies are mainly 
proposed for 2D image classification tasks, and the 
effectiveness of 3D point cloud semantic segmentation 
on data from construction sites remains to be tested. 

3 Datasets 
For this study, the datasets were acquired by a LiDAR 

scanner at the student center construction site at Georgia 
Institute of Technology. They are manually labeled into 
10 classes: ceiling, column, floor, pipe, wall, window, 
noise, and others. The numbers of points for the first 6 
classes (Figure 2) in total 4 scans were shown in Table 1. 

Figure 2. Example of ground truth (left) and 
segmentation result (right). The ceiling is moved 
upwards for better visualization for other classes. 



4 Data Preprocessing 

4.1 Denoising 
Raw point cloud data from construction sites contain 

redundant information that should be removed before 
preprocessing. Except for six structural components, 
including ceilings, columns, floors, pipes, walls and 
windows, other movable onsite components such as 
workers, tools, materials, and noise are removed to keep 
the data specialized, clean, and distinct. We use statistical 
outlier removal to remove noise that deviate from their 
neighbors compared with the average of the point cloud. 
There are primarily two benefits to denoise raw point 
cloud data. The first one is that movable data like workers, 
tools, and materials occupy only a small percentage of 
the total data; however, the amount can vary largely 
across different sites, aggravating the imbalanced-
classification problem and influencing the accuracy of 
other desired structural components. The second reason 
is that those movable data do not have regular geometric 
shapes; thus, the normal for small local faces can differ 
even on the same object. In Table 2, we calculate and add 
the normal of small faces formed by local points to the 
backbone network. Removing these irregular 
components would improve the model's performance by 
making the cylinder shapes more distinguishable from 
the plane context, since the normal of cylinders and 
planes are more consistent on a local surface than 
movable opponents. 

4.2 Point Transformation 
In the PointNet framework, an affine transformation 

matrix is used for the input and feature transformations 
in the model, and it is claimed that combining both the 
regularization and transformations can achieve its best 
performance [4]. In our implementation of raw point 
cloud data from construction sites, we found that higher 
accuracy can be achieved by applying a rotation on the 
point cloud data to align most walls to the x-axis and y-
axis before feeding it into the neural network. Raw point 
cloud data from construction sites have more 
complicated shapes and contain more outlier points than 
the indoor environment, so alignment to x-axis and y-axis 
would help each block have a more reasonable 
distribution of different categories of points in the 
afterward sampling process. In actual practice, we 

divided the angle from −45°  to 45°  by small intervals. 
For each small angle, we calculated the histogram of the 
distribution of the x-axis and y-axis for the point cloud 
data. Then we operate max pooling on the number of 
points in each bin by step size 3 and sum up the top 20 
results in the x-axis and y-axis. By maximizing the 
density of bins in this way, we could acquire an angle by 
which most of the walls are rotated in x and y directions. 
For the four datasets we used for training and evaluating, 
the angles are, respectively −33.44° , −42.48° , 3.86° 
and −15.29°. 

4.3 Point Sampling 
We apply the same sampling method used in [4] for 

indoor environments. We divide the area of construction 
sites in x and y directions with a block size of 2 meters. 
In every single block, we sample 1024 points randomly 
through the z direction and use stride size 1 meter in x 
and y directions to overlap part of the sampling space. 
The training result determines these numbers that a 
sparser sampling would not likely provide enough 
neighbor points for later normal calculation, thus 
harming the accuracy of prediction, while a denser 
sampling would significantly increase the number of 
points as well as the time used for training and computing. 
Note that in this study, we do not apply any sampling 
methods such as oversampling or undersampling. Further 
research involves using other sampling strategies to 
improve prediction accuracies of minor classes such as 
window and column. 

5 Semantic Segmentation 

5.1 Backbone Network 
PointNet is a neural network framework that can 

consume point cloud data directly to perform 3D 
recognition tasks, such as object classification, part 
segmentation, and semantic segmentation, efficiently and 
effectively without transforming the data to 3D voxel 
grids or 2D images. The detailed design of the network 
structure uses the max pooling layer, global feature 
combined with the local feature, and transformation 
matrices to deal with the three main properties of point 
cloud data, unordered, interaction among points, and 
invariance under transformations.  

Figure 3. The architecture of the modified PointNet



In our implementation, we use a similar neural 
network structure to the PointNet paper for indoor 
semantic segmentation, except for increasing input data 
dimension from 9 to 13. The architecture of our backbone 
network is shown in Error! Reference source not found. 

5.2 Intensity and Normal 
In the original PointNet framework, the 9 features of 

the point cloud used in the neural network are, 
respectively local x, y, z coordinates, global x, y, z 
coordinates, and normalized R, G, B values of color. 
Although local coordinates combined with global 
coordinates provide certain knowledge for point 
segmentation, in practice, this information is still 
insufficient for extracting pipe systems with structural 
components like ceilings in proximity for semantic 
segmentation.  

Therefore, we consider adding other features such as 
intensity and normal. Intensity is a feature that we could 
get directly from raw point cloud data from construction 
sites. Since it records the return strength of the beam, it 
has been used in recent research to help recognize the 
material information of construction sites [26]. However, 
since additional factors such as scan angle, range, and 
moisture content can also affect the intensity, it does not 
always lead to a consistent result. Indeed, in our 
experiment, we expected intensity could help us 
recognize columns and windows apart from walls, but the 
result was not promising. We investigated the specific 
intensity field of the data and learned that the intensity of 
columns is relatively stable, but there are also such values 
in the same range for walls. Considering the close spatial 
relationship, it makes sense that the intensity of these 
structural components would be similar, especially for 
raw point cloud data from construction sites.  

On the other hand, normal is beneficial for 
distinguishing pipes from ceilings. We use a K-d Tree 
with dimension three to search neighbor points for each 
point and then calculate the normal vectors of the plane 
constructed by those points. We set the radius to 1 meter 
and the maximum number of neighbors to be searched as 
30. Since pipes have cylindrical shapes and ceilings have
plane shapes, the direction and the distribution of normal
vectors of pipes and ceilings should be distinct even in a
small close proximity. The result shows that by adding
normal and combining with other proposed methods, we
can largely improve the accuracy of pipes without
affecting the accuracy of other major classes such as
ceiling, wall, and floor.

5.3 Weight and Threshold 
The class imbalance has been a big problem in 

convolutional neural networks. For point cloud data from 
construction sites, this problem is more severe than 

indoor environments. The ratios of each class to the total 
number of points of our data are respectively 35.84% for 
ceiling, 3.13% for column, 26.93% for floor, 9.30% for 
pipe, 23.28% for wall and 1.52% for window. Major 
classes like ceiling, floor and wall make up over 86% of 
the whole dataset, while the smallest minority class only 
contains 1.52% of the total points, which causes the ratio 
of imbalance reaches to over 23 [23]. What makes the 
problem worse is that those categories occupying a larger 
percentage of the total data have relatively simple shapes 
compared with the remaining categories. This would 
make the model redundant to change once it finds a 
straightforward relationship between certain features and 
corresponding labels, say the z-axis and floor, and reach 
high accuracy. To mitigate the negative influence of class 
imbalance, we try to apply weight while calculating loss 
and threshold while making a prediction. Before adding 
the loss together, we assign a different weight 𝑤𝑖  for 
wrong predictions from different classes by multiplying 
(1/𝑟𝑖)/ ∑(1/𝑟𝑖)  for each class, where 𝑟𝑖  is the prior 
probability of each class, equalling the ratio of each class, 
calculated by the total number of points 𝑛𝑖 for each class 
(Error! Reference source not found.). Note here that 
we roughly use each class's ratio in the whole dataset 
instead of each training batch; we defer this exploration 
to future work. The other strategy we try is to adjust the 
decision threshold of the output layer in the test phase by 
multiplying the equivalent weight we use for calculating 
loss. We found that weight for training combined with a 
threshold for testing would improve the accuracy for 
minor classes like pipe, column, and window, although it 
might make accuracy for other major classes lower. Since 
recall might not fully reflect the correctness of prediction, 
we further investigate the IoU of each class before and 
after applying weight and threshold. The result is shown 
in Error! Reference source not found.. For pipes, from 
the 4th configuration to the 5th configuration, the 
accuracy increases while IoU decrease means that both 
true positive points and false positive points increase. 
This result is favorable for later shape fitting since little 
more false positive outlier points for pipes should not 
affect cylinder fitting too much because RANSAC 
algorithm uses normals to detect shape.  

Table 1. Number of points (million) and weight 
(threshold) for six classes. 

ceiling column floor pipe wall window 
1 2.33 0.07 2.74 0.82 2.20 0.04 
2 2.63 0.45 2.17 0.53 2.71 0.19 
3 3.39 0.07 1.30 0.51 1.65 0.17 
4 3.02 0.40 2.34 1.09 0.83 0.09 
𝑛𝑖 11.37 0.99 8.54 2.95 7.38 0.48 
𝑟𝑖 0.36 0.03 0.27 0.09 0.23 0.02 
𝑤𝑖  0.02 0.27 0.03 0.09 0.04 0.55 



5.4 Evaluation Metrics 
Since overall accuracy favors over-represented 

majority classes, leading to a highly misleading 
assessment of both training and evaluating [23], we use 
the area under the receiver operating characteristic curve, 
ROC AUC [27], to determine when to stop while training. 
ROC AUC is essentially a plot of the false positive rate 
to the true positive rate for different prediction thresholds. 
While the area under the curve depicted by plots of false 
positive rate and true positive rate pairs gets larger and 
near to 1, the model’s ability to distinguish two different 
classes becomes better. Usually, ROC AUC is used for 
binary classification, but it can also be extended to 
multiple classes. Here we utilize the One-vs-rest 
algorithm to compute the AUC of each class against the 
rest classes [28] to let the model understand the whole 
scene and achieve better performance than binary 
classification. We save the model with the highest ROC 
AUC score for testing during training and use this model 
for further evaluation. 

5.5 Results and Analysis 
We set the number of sampling points in each block as 

1024, block size as 2 meters, stride size as 1 meter, batch 
size as 24,  learning rate as 0.001 and stop training in 20 
epochs. We use cross-validation across all four datasets, 
training on three datasets while testing on the remaining 
dataset four times before averaging the results, and our 
modified backbone network (5th configuration in Error! 
Reference source not found.) results in 89.83% average 
overall training accuracy, 99.08% training ROC AUC 
score with 84.54% average overall validation accuracy, 
91.10% validation ROC AUC score on the semantic 
segmentation task. Error! Reference source not found. 
shows an example of a prediction result. 

From Table 2, we can safely conclude that we have 
found a better way to solve issues caused by partially 
imbalanced noisy data sets. Firstly, comparing the result 
for the first 5 configurations, by utilizing rotation and 
adding intensity, normal, and weight, the average 

accuracy and IoU for pipes would increase from 70.32% 
and 50.88% to 86.26% and 66.42%, while the average 
accuracy and IoU for all 6 classes would increase from 
61.75% and 51.03% to 77.92% and 61.78%. This means 
data preprocessing, adding local features, and dealing 
with class imbalance problems are useful for recognizing 
plumbing pipes from other structural components. 
Secondly, comparing the result for last 3 configurations, 
we found that minority classes like column and window 
would benefit from weight for loss calculation and 
threshold for the testing phase. For pipes, the accuracy 
would increase while the IoU would decrease a little, 
which means some points of the ceiling are recognized as 
pipes. However, this fact should not affect the cylinder 
fitting process too much because RANSAC uses normal 
to detect the shape, and the normal for cylinder and plane 
are different. Finally, we discovered that using weight 
combined with the threshold proposed in the last 
configuration is not as effective as using them separately. 
This might be because we have already compensated 
weight to the loss function through backpropagation in 
the training process. The repeating threshold in the test 
phase would conversely hurt the prediction results.  

6 Pipe Reconstruction 

6.1 Cylinder Shape Detection 
RANSAC is a non-deterministic algorithm to estimate 

the parameters of a mathematical model among noisy 
data. [10] It has been extensively used in reverse 
engineering, like point cloud reconstruction, with its 
favorable properties such as generality, simplicity, and 
robustness. Efficient RANSAC is a variation of the 
original RANSAC algorithm that uses a lazy cost 
evaluation function with a structured sampling strategy 
for candidate shapes like planes, spheres, cylinders, and 
other additional primitives. [29] This method is suitable 
and efficient for automatically acquiring raw point cloud 
data under relatively adverse conditions, such as heavy 
noise in constrained processing time.  

Table 2. Result of semantic segmentation. 

configuration ceiling column floor pipe wall window average 
acc/IoU acc/IoU acc/IoU acc/IoU acc/IoU acc/IoU acc/IoU 

Base PointNet [4] 77.9/70.2 31.3/22.0 98.3/95.6 70.3/50.9 78.7/60.5 15.2/7.0 62.0/51.3 
Ours (w/ rotation) 85.3/78.0 33.7/23.9 96.7/93.6 68.9/51.6 77.5/61.2 32.9/18.5 65.8/54.5 
Ours (w/ rotation & intensity) 90.0/78.8 24.4/17.4 97.9/95.0 69.2/55.6 80.2/64.9 43.0/25.3 67.5/56.2 
Ours (w/ rotation & intensity & normal) 94.6/85.2 23.7/12.1 98.7/97.6 80.3/68.3 79.8/65.0 54.7/25.1 72.0/58.9 
Ours (w/o threshold) 86.0/80.4 53.3/26.8 98.1/97.1 86.3/66.4 76.3/66.4 67.5/33.5 77.9/61.8 
Ours (w/o weight) 88.0/81.5 33.9/17.6 99.2/98.1 83.6/64.8 72.2/64.0 74.7/34.8 75.3/60.1 
Ours (w/ full condition) 82.3/78.3 48.9/15.4 95.3/94.5 89.3/61.3 45.5/38.4 81.0/22.5 73.7/51.7 



For the shape to estimate, a cylinder is generated from 
two points with normals and then verified by the two free 
parameters: max distance to primitive ε and max normal 
deviation α. 

6.2 Experiment Results 
Since there is no common rule for setting distance 

threshold ε and normal deviation threshold α, we found 
their optimal values as well as other parameters from the 
experiments. We set the distance threshold ε as 0.15 and 
10 for normal deviation threshold α. For the minimum 
support points for each primitive, we set the value as 200. 
We use a uniform sampling method like we used in the 
training process. We also use cross-validation across all 
four datasets and make predictions for each area. Error! 
Reference source not found. shows the detection result 
on the ground truth point cloud and prediction result. The 
error rate for cylinders' center coordinates, radius r, and 
length h are listed in Error! Reference source not 
found.. 

Figure 4. Example of reconstruction result of pipes by 
ground truth (left) and prediction result (right). 

The outcome of cylinder shape detection on the 
prediction result is very satisfactory. The error rates for 
x, y, z coordinates of cylinders' centers are mostly under 
1%, while the error rates for the radius r and length h of 
detected cylinders are under 10% and 5%, respectively. 
Although visibly, some leftover points could not be 
detected as cylinders under the current algorithm and 
parameter settings, either due to the unified distance and 
minimum support points we chose or the fact that some 
point clouds from other classes are mislabelled as pipes, 
these results do indicate the potential for directly using 
semantic segmentation prediction result from our 
framework to reconstruct plumbing pipes if the shape 
detection method itself reaches to a sufficient accuracy. 

Table 3. Error rate for RANSAC estimation of cylinder 
parameters. 

x y z r h 
error 
rate 

mean 
(%) 

0.40 0.57 0.54 9.60 4.70 

stdev 0.00 0.01 0.01 0.06 0.05 

7 Conclusion 
The proposed framework shows a novel approach that 

employs class-imbalanced point cloud data from 
construction sites to segement and reconstruct piping 
systems. The proposed techniques and enhanced 
backbone network exhibit robust performance in 
semantic segmentation of partially scanned, highly 
imbalanced, and noisy point cloud data. Moreover, the 
comparison with the ground truth demonstrates the 
feasibility of shape detection. 

Despite the experiment results indicating robust 
segmentation performance, further improvements will be 
investigated by leveraing alternateve sampling methods 
and computing weight and threshold values per each 
batch training step. Also, ablation studies such as 
parameter selection will be considered to optimize the 
piping reconstruction performance across varying 
plumbing pipe demensions. 
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